Abstract

This study was conducted to analyze the stinging response thresholds of individual European and Africanized worker honeybees (Apis mellifera L.) to electrical stimulation. Newly emerged workers were identified, and either were placed into an incubator, into their natal colonies, or cross-fostered in common colonies of European or Africanized ancestry. Nest and guard bees of each type were collected and exposed to an electric stimulus of 0.5 mA, and the time they took to sting a leather substrate was recorded. Africanized bees consistently had significant lower thresholds of defensive response than European bees across all of the environments tested. Guards were faster to sting than nest bees only for the Africanized genotype, suggesting that alleles of African origin have pleiotropic effects on guarding and stinging. This is the first study that shows that single individuals specialized in guarding also may have a lower response threshold for stinging. Environmental effects were also evident. In all cases, bees responded faster to the electrical stimulation after being kept in environments other than their natal nest. Moreover, significant genotype by environment and genotype by task specialization interactions were found. Our results fit a model of division of labor based on differences in response thresholds to stimuli among workers of different genotypes and task groups that result in non-additive effects on colony behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.