Abstract

Objectives Nitric oxide (NO) is a pivotal vasoactive substance modulating arteriovenous fistula (AVF) patency for hemodialysis (HD). Since genetic background could be the predicting factor of AVF malfunction, we aimed to investigate whether the NO-related genotype polymorphisms determine AVF survival rates. Methods This is a retrospective, observational, multi-center study involving eight HD units in Taiwan, enrolled 580 patients initiating maintenance HD via AVFs. Genotype polymorphisms of NO-biosynthesis regulating enzymes (DDAH-1, DDAH-2, eNOS and PRMT1) were compared between HD patients with (n = 161) and without (n = 419) history of AVF malfunction. Subgroup analyses by gender were performed to evaluate the genetic effect in difference sexes. Results In overall population, statistically significant associations were not found between AVF malfunction and the genetic polymorphisms. In the male subgroup (n = 313), a single nucleotide polymorphism (SNP) of PRMT1, rs10415880 (IVS9-193 A/G), showed a significant association with AVF malfunction. Male patients with AA/AG genotype had inferior AVF outcomes compared to GG genotype, regarding primary patency (70.6% vs. 40.9%, p = 0.001), assisted primary patency (81.0% vs. 58.4%, p < 0.001) and secondary patency (83.7% vs. 63.3%, p < 0.001) at a 5-year observation period. From multivariate Cox regression model, the AA/AG genotypes of PRMT1 were an independent risk factor for AVF malfunction in men (HR: 4.539, 95% CI 2.015–10.223; p < 0.001). However, such associations were not found in women. Conclusions rs10415880, the SNP of PRMT1 could be a novel genetic marker associated with AVF malfunction risk in male HD patients. Those with AA and AG genotypes of rs10415880 may predict a poorer long-term patency of AVF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call