Abstract

Objective: Osteogenesis imperfecta (OI) is a rare heterogeneous disease of connective tissue leading to varying degrees of bone fragility. The worst form (type II) is peri-natally lethal whereas the mildest form (type I) is compatible with a normal life span. Over 1000 mutations causing OI have been described in the genes encoding collagen type I. As COL1A1 and COL1A2 are large genes, there are still many codon positions where no mutations have been reported and only a fraction of theoretically possible glycine substitutions have been described. In this study the spectrum of mutations causing OI in Sweden will be investigated and genotype–phenotype correlations as well as pharmacogenetics will be studied. Method: All patients with OI cared for at the Uppsala Osteoporosis Unit (Uppsala University Hospital) or Astrid Lindgren's Paediatric Hospital (Karolinska Institutet, Stockholm) were offered to enter the study. Patients from 140 unrelated families with OI accepted participation; 77 type I, 34 type IV, 20 type III, 5 without previous diagnosis and 4 with unclear OI type. Extensive clinical data is currently being collected on enrolled patients. Exons and flanking intron sequences of COL1A1 and COL1A2 are being sequenced in these families. Results: So far 133/140 families have been completely analyzed and in 27 no mutation was found. A total of 120 mutations have been detected, of which 104 are of a typical OI-type. In COL1A1 73 mutations were found and in COL1A2 31 mutations were noted. In 7 families 2 mutations were present, but only one of these was a typical OI-causing mutation. To date 16 amino acid changing mutations that were not of a typical OI-causing type have been noted and the majority of these have an unclear significance. Calculations of delta BMD Z-score response to bisphosphonate treatment did not show a difference in treatment response between groups with different types of OI or between patients with OI type I due to a qualitative vs. a quantitative collagen type I defect. Conclusion: The spectrum of mutations causing OI described in this Swedish cohort is of the expected type, with the exception of the amino acid changing mutations. It is notable that in seven families two separate mutations were identified. Calculations do not support a mutation dependent response to bisphosphonate treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.