Abstract

Twenty-one yellow-fleshed cassava genotypes were evaluated over two years in five major cassava growing agroecological zones in Nigeria. The trials were established in a randomized complete block design with four replications to assess genotype performance and Genotype × Environment interaction for cassava mosaic disease (CMD), fresh and dry root yield (FYLD; DYLD), root dry matter content (DMC), and total carotene concentration (TCC). Combined analysis of variance showed significant differences (P<0.001) among genotypes (G), environment (E), and Genotype × Environment interaction (GE) for all the traits tested. For reaction to CMD, the best genotypes showing stable resistance were TMS 07/0539 and TMS 07/0628. For root yield, the best genotypes were TMS 01/1368 and TMS 07/0553. Genotype TMS 07/0593 was the best for DMC and TCC across the 10 environments. Variation among genotypes accounted for most of the Total Sum of Squares for CMD (72.1%) and TCC (34.4%). Environmental variation accounted for most of the Total Sum of Squares for FYLD (42.8%), DYLD (39.6%), and DMC (29.2%). This study revealed that TMS 07/0593 has the highest and most stable TCC, DMC with the lowest CMD severity score and appeared to be the best genotype.

Highlights

  • Vitamin A deficiency (VAD) is a global problem of public health significance in under-privileged communities of the world [1]

  • The mean of dry matter content (DMC) was 21.0% with the highest value recorded by the genotype TMS 07/0593 (G13)

  • Considering fresh and dry root yield (FYLD) and DYLD, the two checks TMS 01/1368 and TMS 01/1371, together with TMS 07/0553 and TMS 07/0749 have the highest performance for FYLD and DYLD

Read more

Summary

Introduction

Vitamin A deficiency (VAD) is a global problem of public health significance in under-privileged communities of the world [1]. Cassava varieties often demonstrate specific adaptation due to their high sensitivity to the genotype-by-environment interaction (G × E) that occurs in both short-term and long-term crop performance trials [8] and is a major concern in plant breeding because it reduces progress from selection. This makes cultivar recommendation difficult because the choice of superior cultivars changes with locations [9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call