Abstract
Background: Micronutrient malnutrition is a severe peril for wellbeing of humankind, which can be holistically addressed through genetic biofortification. Lentil, proclaim as poor man’s meat can hold a great promise in global biofortification programme. The present study was designed to appraise genetic variability for Fe and Zn content and elucidate the role of Genotype × Environment interaction for delimitation of micronutrient enriched stable lentil genotypes integrating HA-GGE biplot with REML/BLUP. Methods: Grain Fe and Zn content of 44 lentil genotypes grown at three different locations of West Bengal during two consecutive years were estimated for deciphering the G × E interaction combining HA-GGE and REML/BLUP. Result: Results revealed substantial genetic variability for Fe (48.07 to 107.45 mg kg-1) and Zn (38.72 to 60.07 mg kg-1) in 44 lentil genotypes with significant influence of environment and GE interaction. The present study precisely detected ILL-10123 and VL-156 as the ‘ideal’ genotypes for Fe and Zn content, respectively in addition to non-redundant testing location. Identified genotypes and testing location aid in global biofortification programme for upscaling micronutrient concentration in lentil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.