Abstract

ABSTRACTAs year-to-year weather fluctuation increases, the need for better understanding of their effects on crops becomes ever more pressing. Genotype × environment (G × E) interactions for pod yield and pod number were assessed in a set of 25 West African okra genotypes that were cultivated in four successive years (otherwise called environments) through field trials, arranged in a randomized complete block design, with three replicates. Significant G × E interactions in measured traits were detected, suggesting that selection for stable genotypes, with respect to these traits must be environmental specific. Consequently, additive main effects and multiplicative interaction model was applied to dissect G × E interactions. For pod yield, the highest percentage (38.4%) of the treatment sum of square was attributable to genotypes followed by G × E interactions (36.0%) and environment (25.6%), indicating predominance of genotypic variation for this trait. Conversely, prevalence of G × E interactions was observed for pod number. The biplots of the grand mean and IPCA 1 score revealed that the environments tended to discriminate genotypes in dissimilar fashion. Rainfall, relative humidity, wind speed and soil temperature were identified as strong driving forces for development and growth, affecting pod yield. The identified genotypes could be suitable candidates for further study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.