Abstract

Abscisic acid (ABA) plays an important role during somatic embryo development and maturation in coniferous species. The purpose of this research was to study ABA utilization by genotypes with different embryo maturation capabilities in interior spruce. Cell lines ISP11 and ISP48 were of high embryo maturation capability. By contrast, the tissue of line ISP16 contained numerous immature embryos, but only a few mature embryos developed. Exogenous ABA, i.e. S-ABA [(+)-cis, trans-ABA], racemic ABA, or ABA isomers were added into suspension cultures at a final concentration of 30 microM. In comparison to racemic ABA and ABA isomers, S-ABA reduced tissue proliferation the most. In all cell lines, about half of the racemic ABA was used within 2 weeks; the remaining ABA was (-)-cis, trans-ABA. The concentration of ABA showed little change thereafter. In the cultures supplied with ABA isomers, about half of (+/-)-cis, trans-ABA was utilized during 22 d. By contrast, (+/-)-trans, trans-ABA was hardly used, especially in line ISP16. S-ABA was almost completely metabolized by line ISP11. However, approximately 28% and 22% of the S-ABA remained in the culture of cell lines ISP16 and ISP48, respectively. Cell line ISP16 grew the fastest in culture. By 3 weeks, S-ABA consumption by ISP11 and ISP48 on the basis of tissue growth was, respectively, 2.2-fold and 3.4-fold greater than that of ISP16. A higher ratio of dihydrophaseic acid to phaseic acid existed with cell lines of higher embryo maturation capability, especially when the exogenously supplied ABA was chemically synthesized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call