Abstract

Metabolic rate is a highly plastic trait. Here I examine factors that influence the metabolic rate of the Glanville fritillary butterfly (Melitaea cinxia) in pupae and resting and flying adults. Body mass and temperature had consistent positive effects on metabolic rate in pupae and resting adults but not in flying adults. There was also a consistent nonlinear effect of the time of the day, which was strongest in pupae and weakest in flying adults. Flight metabolic rate was strongly affected by an interaction between the phosphoglucose isomerase (Pgi) genotype and temperature. Over a broad range of measurement temperatures, heterozygous individuals at a single nucleotide polymorphism (SNP) in Pgi had higher peak metabolic rate in flight, but at high temperatures homozygous individuals performed better. The two genotypes did not differ in resting metabolic rate, suggesting that the heterozygotes do not pay an additional energetic cost for their higher flight capacity. Mass-independent resting and flight metabolic rates were at best weakly correlated at the individual level, and therefore, unlike in many vertebrates, resting metabolic rate does not serve as a useful surrogate of the metabolic capacity of this butterfly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call