Abstract
Monoculture and use of disease resistant varieties on large scale usually leads to selection of new pathogen races able to overcome the resistance. The use of variety mixtures can significantly improve the control of the disease and provides stable yield among different environments. The objective of this study was to assess genotype by environment interaction for grain yield in spring barley genotypes grown in two places different in terms of soil and meteorological conditions by the additive main effects and multiplicative interaction model. The study comprised 25 spring barley genotypes (five cultivars: Basza, Blask, Skarb, Rubinek and Antek, and 20, two- and three-component mixtures), analyzed in eight environments (compilations of two locations and four years) through field trials arranged in a randomized complete block design, with three replicates. Grain yield of the tested genotypes varied from 32.88 to 74.31 dt/ha throughout the eight environments, with an average of 54.69 dt/ha. In the variance analysis, 68.80% of the total grain yield variation was explained by environment, 6.20% by differences between genotypes, and 7.76% by genotype by environment interaction. Grain yield is highly influenced by environmental factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.