Abstract

Carcasses of 181 barrows, representing five genotypes, 1) H x HD, 2) SYN, 3) HD x L[YD], 4) L x YD, and 5) Y x L (H = Hampshire, D = Duroc, SYN = synthetic terminal sire line, L = Landrace, and Y = Yorkshire), and two levels of ractopamine (RAC) treatment (0 and 20 ppm) were completely dissected and the data were used to examine genotype and treatment (RAC) biases in estimation of fat-standardized lean weight and to evaluate accuracies and precisions realized by use of equations based on variables derived from different technologies. Independent variables used to establish regression equations represented technologies of direct carcass measurements, optical probe data, TOBEC (total body electrical conductivity) readings, and dissected (DHMLN) and fat-standardized (FSHMLN) ham lean. Genotype bias existed when any equation from a single technology was used and was minimized by combining FSHMLN with one TOBEC reading, carcass length, and the probe measurement of 10th rib fat depth. Large RAC biases appeared when equations from direct carcass measurements or optical probe data were used and were minimized by an equation using either DHMLN or FSHMLN. A practical equation with relatively high R2 value and small genotype and RAC biases were developed by combining TOBEC readings with direct carcass measurements of 10th rib fat depth and warm carcass weight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call