Abstract

The present effort aims to investigate the cytotoxic and genotoxic impact of three widely used nanoparticles (ZnO, TiO2 and Al2O3) on root cells of Allium cepa as a test organism. The root tip of Allium cepa were treated with three different concentrations (0.1 10 and 100 mg/L) of the above-mentioned NPs and the observations were recorded after proper growth of root under both nanoparticle solutions and UV-B exposure in combined conditions and separately. The parameters such as mitotic index, various forms of chromosomal aberrations, various reactive oxygen species (ROS) generation such as superoxide radical (O−2·), hydrogen peroxide, hydroxyl radical (·OH), lipid peroxidation and bio-uptake of nanoparticles were assessed. The results revealed that for all the three nanoparticles, mitotic index (MI) was highly reduced in comparison to control. Among the three nanoparticles, the MI value of TiO2 was 59.5% at 0.1 mg/L. Chromosomal aberration data suggest that nano Al2O3 exhibited disturbed metaphase at 0.1 mg/L, and abnormal anaphase and sticky metaphase at 10 and 100 mg/L, respectively. Similarly, lagged metaphase and anaphase with multiple chromatin bridges were recorded for both nano ZnO and nano TiO2 at 0.1 mg/L. But, nonsignificant (p > 0.05) results were recorded between only nano metal oxide and UV-B along with nano metal oxide. ROS generation data revealed that ZnO is more active under UV-B than TiO2 and Al2O3. The cellular deformation and the existence of metal in A. cepa under nano ZnO, TiO2 and Al2O3 treatment were evaluated by Scanning Electron Micrograph (SEM) and X-ray fluorescence (XRF) study, respectively. It may safely be concluded that with respect to chromosomal aberration and mitotic index, out of the three nanoparticles, Al2O3 is the most severe at higher concentrations and nano ZnO shows lowest mitotic index under UV-B exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call