Abstract

Differences between tissues in the expression of drug-metabolizing enzymes may substantially contribute to tissue-specificity of chemical carcinogens. To verify this hypothesis, the spontaneously immortalized human keratinocytes HaCaT were used, in order to evaluate the genotoxic potential of 7H-dibenzo[c,g]carbazole (DBC), a known hepatocarcinogen and sarcomagen, and its synthetic tissue-specific derivatives, 5,9-dimethyl-DBC (DiMeDBC) and N-methyl-DBC (N-MeDBC), which manifest specific tropism to the liver and skin, respectively. HaCaT cells mainly express cytochrome P4501A1 (CYP1A1), which is involved in metabolism of DBC and N-MeDBC, but not DiMeDBC [10]. Both DBC and the sarcomagen N-MeDBC induced significant levels of DNA strand-breaks, micronuclei, and DNA adducts followed by the phosphorylation of the p53 protein and histone H2AX in HaCaT cells. In contrast, the specific hepatocarcinogen DiMeDBC was devoid of any significant genotoxic activity in this cell line. Our study demonstrates that the absence of drug-metabolizing enzyme(s) involved in DiMeDBC metabolism may contribute substantially to the tissue-specific genotoxicity of this hepatocarcinogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.