Abstract

Combining genotoxicity/mutagenicity tests and physico-chemical methodologies can be useful for determining the potential genotoxic contaminants in soil samples. The aim of our study was to evaluate the genotoxicity of soil by applying an integrated physico-chemical-biological approach. Soil samples were collected at six sampling points in a Slovenian industrial and agricultural region where contamination by heavy metals and sulphur dioxide (SO(2)) are primarily caused by a nearby power plant. The in vitro alkaline version of the comet assay on water soil leachates was performed with Caco-2 and HepG2 cells. A parallel genotoxicity evaluation of the samples was performed by Ames test using Salmonella typhimurium and the Tradescantia micronucleus test. Pedological analyses, heavy metal content determination, and different physico-chemical analyses, were also performed utilizing standard methodology. Water leachates of soil samples were prepared according to standard methods. Since only a battery of biotests with prokaryotic and eukaryotic organisms or cells can accurately estimate the effects of (geno)toxicants in soil samples and water soil leachates, a combination of three bioassays, with cells or organisms belonging to different trophic levels, was used. Genotoxicity of all six water soil leachates was proven by the comet assay on both human cell lines, however no positive results were detected by bacterial assay, Ames test. The Tradescantia micronucleus assay showed increase in micronuclei formation for three samples. According to these results we can assume that the comet assay was the most sensitive assay, followed by the micronucleus test. The Ames test does not appear to be sensitive enough for water soil leachates genotoxicity evaluations where heavy metal contamination is anticipated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.