Abstract
Abstract Pollution of the aquatic environment is an ever-growing problem, as waters are the ultimate sink for the large number of xenobiotics from multiple sources. DNA damaging agents have a significant ecological relevance since they are implicated in many pathological processes and exert effects beyond that of individual being active through following generations. A large number of methods have been applied to evaluate genotoxic damage in different aquatic species. Comet assay, as method for detecting DNA alterations, and micronucleus test, as an index of chromosomal damage are the most widely applied and validated methods in field studies. These methods were applied in different vertebrate and invertebrate aquatic species, but only mollusk and fish species have been employed in routine biomonitoring programs. Mussels, due to their widely geographical distribution and the suitability for caging represent the bioindicator of choice in field studies. Mytilus species is the most used marine mussel. The use of fish is limited to specific geographic areas. The present review mainly focuses on the application of comet assay and micronucleus test in mussels. A number of biomonitoring studies in mussels, using comet assay or micronucleus test, revealed exposure to different classes of genotoxic compounds with a good discrimination power. The different evidence from the two assays, reflects different biological mechanisms for the two genetic endpoints, DNA damage and chromosomal damage, suggesting their combined application in the field. Different endogenous and exogenous factors have been shown to modulate the genotoxic responses in mussels, acting as confounding factors in environmental monitoring. The use of standardized protocol for caging, sampling and genotoxity evaluation is critical in biomonitoring studies. The use of a multimarker approach coupling genotoxicity biomarkers with physiological and biochemical factors allows to have a complete picture of the environmental pollution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.