Abstract

BackgroundDental radiographs are essential tools for diagnosis. However, there are significant concerns about the dangerous effect of radiation especially on children. The aim of this study was to evaluate genotoxicity and cytotoxicity in the exfoliated cells of buccal mucosa of children subjected to Cone Beam Computed Tomography (CBCT).Methods The study included 18 healthy children aged (9–12 years) who were exposed to CBCT. All CBCT scans were performed with the i-CAT CBCT. Exfoliated buccal cells were scraped from the left and right cheek immediately before the exposure, after 10 ± 2 days, and after 1 month. Cells were stained using Feulgen/fast green stain and examined under light microscopy. Genotoxicity (Micronuclei) and cytotoxicity (condensed chromatin, karyorrhexis, pyknosis, and karyolysis) were scored. Statistical analysis was performed using the McNemar test, Wilcoxon Signed-Rank test, and Mann-Whitney U test at a significance level of p < 0.05.ResultsThere were statistically significant differences in the mean percentages of micronuclei, condensed chromatin, karyorrhexis, pyknosis, and karyolysis before and 10 ± 2 days after the CBCT scan (p < 0.05). There were no statistically significant differences in the frequency of micronuclei, condensed chromatin, karyorrhexis, or pyknosis before and 1 month after the exposure (p > 0.05) except for karyolysis (p < 0.05).ConclusionsCBCT may induce genotoxicity and cytotoxicity in buccal mucosa cells of children. Therefore, CBCT should not be prescribed unless necessary as it cannot be considered a risk-free procedure.

Highlights

  • Dental radiographs are essential tools for diagnosis

  • Cone Beam Computed Tomography (CBCT) is recognized as an encouraging radiographic technique that has been utilized in different dental specialties such as dentomaxillofacial radiologists, orthodontics, periodontics, and endodontics [3,4,5,6,7]

  • Children are at higher risk from radiation than adolescents and adults because (1) the fast-growing tissues in children are considered more radiosensitive than mature tissues in adults; (2) a child has a longer life expectancy compared to an adult; the cumulative radiation effect has more extended periods to cause cancers; (3) effective dose of CBCT radiation, which is the measurement of the harmful effect of radiation to the human body, is approximately 30% greater in children than in adolescents; (4) the organ dose for children, which is the absorbed dose to a particular organ, is greater than the adolescents with the salivary glands getting a more significant dose compared to other head and neck organs

Read more

Summary

Introduction

Dental radiographs are essential tools for diagnosis. There are significant concerns about the dangerous effect of radiation especially on children. The aim of this study was to evaluate genotoxicity and cytotoxicity in the exfoliated cells of buccal mucosa of children subjected to Cone Beam Computed Tomography (CBCT). Radiographs help dental practitioners definitively diagnose oral conditions that cannot be diagnosed by clinical examination alone [1, 2]. Cone Beam Computed Tomography (CBCT) is recognized as an encouraging radiographic technique that has been utilized in different dental specialties such as dentomaxillofacial radiologists, orthodontics, periodontics, and endodontics [3,4,5,6,7]. Dental radiographs are essential tools for diagnosis [1], there are significant concerns about the dangerous effect of radiation.

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.