Abstract

Perfluorooctanoic acid (C 8HF 15O 2, PFOA) is widely used in various industrial fields for decades and it is environmentally bioaccumulative. PFOA is known as a potent hepatocarcinogen in rodents. But it is not yet clear whether it is also carcinogenic in humans, and the genotoxic effects of PFOA on human cells have not yet been examined. In this study, the genotoxic potential of PFOA was investigated in human hepatoma HepG2 cells in culture using single cell gel electrophoresis (SCGE) assay and micronucleus (MN) assay. In order to clarify the underlying mechanism(s) we measured the intracellular generation of reactive oxygen species (ROS) using dichlorofluorescein diacetate as a fluorochrome. The level of oxidative DNA damage was evaluated by immunocytochemical analysis of 8-hydroxydeoxyguanosine (8-OHdG) in PFOA-treated HepG2 cells. PFOA at 50–400 μM caused DNA strand breaks and at 100–400 μM MN in HepG2 cells both in a dose-dependent manner. Significantly increased levels of ROS and 8-OHdG were observed in these cells. We conclude that PFOA exerts genotoxic effects on HepG2 cells, probably through oxidative DNA damage induced by intracellular ROS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call