Abstract

The single cell gel electrophoresis or comet assay is widely used to detect DNA damage in isolated cells following exposure to genotoxic compounds. This assay, although commonly used with marine bivalve tissue and circulatory fluid, has received little use or demonstration in freshwater mussels of the order Unionida. Because such a large proportion (>70%) of this faunal group is globally imperiled and is being adversely impacted by environmental contaminants, including many genotoxicants, the aim of this study was to assess the applicability of the comet assay in unionid mussel hemolymph sampled non-lethally with a reference genotoxicant, hydrogen peroxide (H2O2) and polycyclic aromatic hydrocarbons (PAHs), a class of common environmental pollutants of genotoxic action. DNA damage was evaluated in samples of hemolymph from Elliptio complanata in both in vitro and in vivo exposures and quantified using the endpoints % tail DNA, or the percentage of DNA in the comet tail and OTM or olive tail moment, the product of the fraction of DNA in the tail and tail length. Hemocytes were isolated and the comet assay was performed on control, 160 µM H2O2, and PAH treated cells. From the in vitro exposures, 160 µM H2O2, as well as the 50 and 100 µg/L total PAH treatments yielded statistically significant (p < 0.05) levels of DNA damage, with the H2O2 yielding an average of 39.7 % tail DNA and 13.3 OTM and the two PAH treatments yielding 40.7 % and 38.6 % tail DNA, and 12.4 and 11.0 OTM, respectively. An in vivo PAH exposure with adult E. complanata did not detect a similar genotoxic response to that detected with in vitro exposure, indicating that additional research and evaluation may be necessary before implementing the widespread use of a non-lethal, unionid mussel hemolymph based genotoxicity screening tool for environmental biomonitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.