Abstract

Several studies have shown that polycyclic aromatic hydrocarbons (PAHs) produce genotoxic effects in assays performed in vivo and in vitro. This study was undertaken to investigate the ability of benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) to induce DNA damage in a human lung fibroblast cell line (MRC-5), using sister-chromatid exchanges test (SCEs), the comet assay, and evaluating point mutations in codon 12 of the K-ras protooncogene by polymerase chain reaction-single-strand conformation polymorphisms (PCR-SSCPs) and restriction fragment length polymorphisms (RFLP)-enriched PCR methods. Sister-chromatid exchanges frequencies were significantly increased in cells exposed to benzo[a]pyrene and dibenzo[a,l]pyrene in relation to controls (p < .001). Using the standard alkaline comet assay, significant differences between groups were found for the variable comet moment (CM) when cells were exposed to BP (p < .001) and DBP (p < .001). Nevertheless, PCR-SSCP and RFLP-enriched PCR methods did not show any association between treatments with BP and DBP and K-ras point mutations. The data presented in this study indicated that BP and DBP induced both DNA strand breaks and sister-chromatid exchanges but not significant point mutations at codon 12 of K-ras gene in the MRC-5 cell line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.