Abstract

2-Amino-9H-pyrido[2,3-b]indole (AαC), which is present in high quantities in cigarette smoke and also in fried food, has been reported to be a probable human carcinogen. However, few studies have reported on the genotoxicity and oxidative stress induced by AαC. This study investigated the genotoxic effects of AαC in human hepatoma G2 (HepG2) and human lung alveolar epithelial (A549) cells using the comet assay. Significant increases in DNA fragment migration indicated that AαC causes serious DNA damage in HepG2 and A549 cells. The role of oxidative stress in the mechanism of AαC-induced genotoxicity was clarified by measuring the level of intracellular reactive oxygen species (ROS), the GSH/GSSG ratio and the formation of 8-hydroxydeoxyguanosine (8-OHdG), a marker of oxidative DNA damage. The results showed that the levels of ROS and 8-OHdG increased, whereas the GSH/GSSG ratio decreased. The concentration of 8-OHdG was positively related to DNA damage. Taken together, these results indicate that AαC can induce genotoxicity and oxidative stress and that AαC likely exerts genotoxicity in HepG2 and A549 cells through ROS-induced oxidative DNA damage. This is the first report to describe AαC-induced genotoxic and oxidative stress in HepG2 and A549 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.