Abstract

The present study aimed to evaluate biochemical and genotoxic effects of the herbicides atrazine (ATZ) and Roundup® (RD) separately, as well as their mixture, on the freshwater clam Corbicula fluminea after 96h exposure. Animals were exposed to 2 and 10ppb of ATZ (ATZ2 and ATZ10), 2 and 10ppm of RD (RD2 and RD10) and the following mixtures: 2ppb ATZ+2ppm RD (AR2) and 10ppb ATZ+10ppm RD (AR10). Activities of ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR), as well as the multixenobiotic resistance mechanism (MXR), reduced glutathione concentrations (GSH) and lipid peroxidation (LPO) were measured in gills and digestive gland. DNA damage was determined in clams hemocytes through the comet assay. The gills were more susceptible to the action of the herbicides and the results showed that ATZ2 and ATZ10 caused a significant reduction in EROD and the mixture leads to a significant decrease in EROD and MXR. No significant change in the biotransformation parameters was observed in the digestive gland. Regarding the primary antioxidant defenses, SOD activity increased in the gills of clams exposed to ATZ10 and RD10 and in the digestive gland of animals exposed to RD2 and RD10, CAT activity was significantly reduced only in digestive gland of clams exposed RD10 while GPX increased in the gills after exposure to ATZ2 and RD10. The exposure to RD10 caused a significant increase in LPO in both gills and digestive gland. While the exposure to ATZ and RD separately did not increase DNA damage, the exposure to AR2 and AR10 caused a significant increase in the occurrence of DNA damage. In conclusion, this study showed that both herbicides applied alone caused effects on C. fluminea; ATZ interfered mostly in biotransformation while RD interfered mainly in antioxidant defenses leading to lipid peroxidation. The herbicides mixture showed antagonistic effects on the gills EROD and on lipid peroxidation in gills and digestive gland and synergistic effects on the gills MXR and on DNA damage in the hemocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call