Abstract

The aneugenic and clastogenic ability of cadmium chloride(II), cadmium sulfate(II), nickel chloride(II), nickel sulfate(II), chromium chloride(III) and potassium dichromate(IV) have been evaluated through kinetochore-stained micronucleus test. Traditional genotoxicity assays evaluate DNA damage, gene mutations and chromosome breakage. However, these tests are not adequate to detect aneugenic agents that do not act directly on DNA. Staining kinetochores in the cytokinesis-blocked micronucleus assay is a useful way to discriminate between clastogens and aneuploidogens and may allow a rapid identification of aneuploidy-inducing environmental compounds. Human diploid fibroblasts (MRC-5) were employed. All compounds increased micronuclei frequency in a statistically significant way. However, increases in kinetochore-positive micronuclei frequencies were higher than in kinetochore-negative ones. The present work demonstrates the genotoxic ability of the cadmium and chromium salts studied. Aneugenic as well as clastogenic ability could be observed with this assay. Nickel salts, as it was expected because of their known weak mutagenicity, showed lower genotoxic effects than the other metal salts studied. As the test employed only allows the detection of malsegregation, it is proposed that this mechanism is at least one of those by which the tested metal salts induced aneuploidy. On the other hand, visualization of kinetochores in all experiments suggests that the compounds studied did not act by damaging these structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.