Abstract

The Hox family of homeobox genes encode transcription factors that control different aspects of metazoan development. They appear clustered in the genomes of those animals in which their relative positions have been mapped. Although clustering is assumed to be a general property of Hox genes in all bilaterians, just a few species have been studied in sufficient detail to support this claim. Linear duplication of genes inside the cluster, as well as full-cluster duplications account for the actual complexity of HOX clusters in the different animal groups that have been studied (mainly vertebrates). Understanding how the Hox genes are regulated during development will depend, ultimately, on the generation of more powerful tools for cloning intact HOX clusters and for elucidating their cis-regulatory components. To clarify the roles of the Hox genes themselves, we will need to characterize in detail their downstream targets, and some progress in this direction is coming mainly from the recent use of arrayed libraries. Moreover, a comprehensive study of Hox target genes in tissues and organisms promises, in the long term, to give us a clear idea of the role that Hox genes play during development and how they have evolved over time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.