Abstract

Maize farming requires high amounts of nitrogen (N) fertilizer, which can have detrimental effects on agronomic sustainability and the environment. Thus, irrespective of the mode of N fertilization, an increased knowledge of the mechanisms controlling plant N metabolism is essential for improving nitrogen use efficiency (NUE) in maize. This new knowledge will reduce the excessive input of fertilizers, while maintaining an acceptable yield and a sufficient profit margin for the farmers. It is now possible to further develop whole-plant agronomic and physiological studies. These can be combined with gene, protein, and metabolite profiling to build up a comprehensive picture depicting the different steps of N uptake, assimilation, and recycling to produce either biomass in vegetative organs or proteins in storage organs. We provide an overview describing how our understanding of the physiological and molecular controls of N assimilation in maize has been advanced using combined approaches. These are based on agronomic, whole-plant physiology, genetic, modeling, and systems biology approaches. Current knowledge and prospects for selecting high-yielding maize genotypes adapted to lower N fertilizer input and for identifying biological markers representative of the plant N status for breeding and agronomic purposes are reviewed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call