Abstract
Herbivorous insects represent the most species-rich lineages of metazoans. The high rate of diversification in herbivorous insects is thought to result from their specialization to distinct host-plants, which creates conditions favorable for the build-up of reproductive isolation and speciation. These conditions rely on constraints against the optimal use of a wide range of plant species, as each must constitute a viable food resource, oviposition site and mating site for an insect. Utilization of plants involves many essential traits of herbivorous insects, as they locate and select their hosts, overcome their defenses and acquire nutrients while avoiding intoxication. Although advances in understanding insect-plant molecular interactions have been limited by the complexity of insect traits involved in host use and the lack of genomic resources and functional tools, recent studies at the molecular level, combined with large-scale genomics studies at population and species levels, are revealing the genetic underpinning of plant specialization and adaptive divergence in non-model insect herbivores. Here, we review the recent advances in the genomics of plant adaptation in hemipterans and lepidopterans, two major insect orders, each of which includes a large number of crop pests. We focus on how genomics and post-genomics have improved our understanding of the mechanisms involved in insect-plant interactions by reviewing recent molecular discoveries in sensing, feeding, digesting and detoxifying strategies. We also present the outcomes of large-scale genomics approaches aimed at identifying loci potentially involved in plant adaptation in these insects.
Highlights
A large majority of herbivorous insects feeds on specific host plant species (Forister et al, 2015)
To confirm the assigned biotypes, we examined their fecundity on M. sativa, P. sativum, and V. faba
There was variation in total nymph production between the lines, both biotypes produced a large number of nymphs on V. faba and their respective specific host plant but not on the nonspecific host plant (Figure 1)
Summary
A large majority of herbivorous insects feeds on specific host plant species (Forister et al, 2015). In planta expression of aphid salivary proteins (e.g., Mp10 and Mp42 from M. persicae) reduces aphid fecundity, suggesting a possible property of salivary proteins as avirulence proteins, which are recognized by a plant and trigger plant defense reactions against aphids (Bos et al, 2010). These results indicate that a set of salivary effectors can determine the outcome of plant-aphid interactions
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.