Abstract
Sapru et al. show in this issue of Critical Care that variants of thrombomodulin and the endothelial protein C receptor, but not protein C, are associated with mortality and organ dysfunction (ventilation-free and organ failure-free days) in ARDS. Hundreds of gene variants have been found prognostic in sepsis. However, none of these prognostic genomic biomarkers are used clinically. Predictive biomarker discovery (pharmacogenomics) usually follows a candidate gene approach, utilizing knowledge of drug pathways. Pharmacogenomics could be applied to enhance efficacy and safety of drugs used for treatment of sepsis (e.g., norepinephrine, epinephrine, vasopressin, and corticosteroids). Pharmacogenomics can enhance drug development in sepsis, which is very important because there is no approved drug for sepsis. Pharmacogenomics biomarkers must pass three milestones: scientific, regulatory, and commercial. Huge challenges remain but great opportunities for pharmacogenomics of sepsis are on the horizon.
Highlights
Sapru et al show in this issue of Critical Care that variants of thrombomodulin and the endothelial protein C receptor, but not protein C, are associated with mortality and organ dysfunction in ARDS
This issue of Critical Care presents a novel human genomics study showing that variants of thrombomodulin (TM) and the endothelial protein C receptor (EPCR), but not protein C, are associated with mortality and organ dysfunction in ARDS—that is, they are prognostic biomarkers [1]
Sepsis has gone through 15 years of discovery of many genomic biomarkers [2, 3]
Summary
Sapru et al show in this issue of Critical Care that variants of thrombomodulin and the endothelial protein C receptor, but not protein C, are associated with mortality and organ dysfunction (ventilation-free and organ failure-free days) in ARDS. Let us define some terminology: a prognostic biomarker identifies prognosis (e.g., increased risk of death); a diagnostic biomarker diagnoses condition (e.g., sepsis diagnostic); and a predictive biomarker (companion diagnostic) uses genomics to define response to a drug
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.