Abstract
Cronobacter sakazakii causes meningitis and necrotizing enterocolitis in premature infants. However, its virulence determinants, especially those specific for strains associated with neonate infections, remain largely unknown. In this study, we performed a comparative genomic analysis of 209 C. sakazakii genomes, and 8 clonal groups (CGs) were revealed. CG1 and CG2 were found to be significantly associated with neonate infections, and significantly prevalent genes in these 2 CGs were identified. Of these, a gene encoding the LysR-type regulator, CklR, was shown to contribute to bacterial pathogenicity based on animal experiments. We found that CklR directly binds and activates the suf Fe-S cluster biosynthesis operon, and high expression of the suf operon increases bacterial resistance to oxidative stress, which increases survival within the host. This leads to a high degree of bacteremia, which contributes to the development of meningitis. Our work revealed a novel virulence factor specific to predominant pathogenic C. sakazakii strains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.