Abstract

The sequencing of several genomes from each of the three domains of life (Archaea, Bacteria and Eukarya) has provided a huge amount of data that can be used to gain insight about early cellular evolution. Some features of the universal tree of life based on rRNA polygenies have been confirmed, such as the division of the cellular living world into three domains. The monophyly of each domain is supported by comparative genomics. However, the hyperthermophilic nature of the ‘last universal common ancestor’ (LUCA) is not confirmed. Comparative genomics has revealed that gene transfers have been (and still are) very frequent in genome evolution. Nevertheless, a core of informational genes appears more resistant to transfer, testifying for a close relationship between archaeal and eukaryal informational processes. This observation can be explained either by a common unique history between Archaea and Eukarya or by an atypical evolution of these systems in Bacteria. At the moment, comparative genomics still does not allow to choose between a simple LUCA, possibly with an RNA genome, or a complex LUCA, with a DNA genome and informational mechanisms similar to those of Archaea and Eukarya. Further comparative studies on informational mechanisms in the three domains should help to resolve this critical question. The role of viruses in the origin and evolution of DNA genomes also appears an area worth of active investigations. I suggest here that DNA and DNA replication mechanisms appeared first in the virus world before being transferred into cellular organisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call