Abstract

The common marmoset monkey (Callithrix jacchus) is a New World primate that is increasingly used in biomedical research as a model organism. Due to the occurrence of natural bone marrow chimerism, it represents a particularly useful primate model in immunological research. In this study, we describe the genomic organization of the CD94, NKG2, and LY49L genes in the NK complex (NKC) of the common marmoset based on complete sequencing of a bacterial artificial chromosome clonal contig. This region of the marmoset NKC is 1.5 times smaller than its human counterpart, but the genes are colinear and orthologous. One exception is the activating NKG2CE gene, which is probably an ancestral form of the NKG2C- and NKG2E-activating receptor genes of humans and great apes. The two completely sequenced marmoset bacterial artificial chromosome clones are derived from distinct haplotypes, which differ by 200 sites in the overlapping sequence. Analyses of NKC genes in nine additional marmoset individuals revealed a moderate degree of polymorphism of the CD94, NKG2A, NKG2CE, and NKG2D genes. Furthermore, expression analyses identified several alternatively spliced transcripts, particularly of the CD94 gene. Several products of alternative splicing of NKC genes are highly conserved among primates. Alternative transcriptional start sites were found, but these probably do not lead to a change of the translational start site or result in longer or shorter cytoplasmic regions of these type II membrane receptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call