Abstract
Tourette syndrome is a developmental neuropsychiatric disorder. Its etiology is complex and elusive, although an important role of genetic factors has been established. The aim of the present study was to identify the genomic basis of Tourette syndrome in a group of families with affected members in 2 or 3 generations. Whole-genome sequencing was performed followed by co-segregation and bioinformatic analyses. Identified variants were used to select candidate genes, which were then subjected to gene ontology and pathway enrichment analysis. The study group included 17 families comprising 80 patients with Tourette syndrome and 44 healthy family members. Co-segregation analysis and subsequent prioritization of variants pinpointed 37 rare and possibly pathogenic variants shared among affected individuals within a single family. Three such variants, in the ALDH2, DLD and ALDH1B1 genes, could influence oxidoreductase activity in the brain. Two variants, in SLC17A8 and BSN genes, were involved in sensory processing of sound by inner hair cells of the cochlea. Enrichment analysis of genes whose rare variants were present in all patients from at least 2 families identified significant gene sets implicated in cell-cell adhesion, cell junction assembly and organization, processing of sound, synapse assembly, and synaptic signalling processes. We did not examine intergenic variants, but they still could influence clinical phenotype. Our results provide a further argument for a role of adhesion molecules and synaptic transmission in neuropsychiatric diseases. Moreover, an involvement of processes related to oxidative stress response and sound-sensing in the pathology of Tourette syndrome seems likely.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.