Abstract

COVID-19 vaccines can be the tugboats for preventing SARS-CoV-2 infections when they are practical and, more importantly, without adverse effects. However, the reality is that they may result in short-term or long-term impacts on COVID-19-related diseases and even trigger the formation of new variants of SARS-CoV-2. Using published data, we use a set of optimized-performance COVID-19 genomic biomarkers (MND1, CDC6, ZNF282) to study the benefits and adverse effects of the BNT162b2 vaccine. We found that the vaccine lowered the expression values of genes MND1 and CDC6 while heightening the expression values of ZNF282 in individuals who are SARS-CoV-2 naïve, which is expected and satisfies the biological equivalence between the COVID-19 disease and the genomic signature patterns established in the literature. However, we also found that COVID-19-convalescent octogenarians responded reversely. The vaccine heightened the expression values of MND1 and CDC6. In addition, it lowered the expression values of ZNF282. Such adverse effects raise outstanding concerns about whether or not COVID-19-convalescent individuals should take the current vaccine or when they can take it. These findings are new at the genomic level and can provide insights into developing next-generation vaccines, antiviral drugs, and pandemic management guidance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call