Abstract

BackgroundKlebsiella oxytoca DSM 29614 - isolated from acid mine drainages - grows anaerobically using Fe(III)-citrate as sole carbon and energy source, unlike other enterobacteria and K. oxytoca clinical isolates. The DSM 29614 strain is multi metal resistant and produces metal nanoparticles that are embedded in its very peculiar capsular exopolysaccharide. These metal nanoparticles were effective as antimicrobial and anticancer compounds, chemical catalysts and nano-fertilizers.ResultsThe DSM 29614 strain genome was sequenced and analysed by a combination of in silico procedures. Comparative genomics, performed between 85 K. oxytoca representatives and K. oxytoca DSM 29614, revealed that this bacterial group has an open pangenome, characterized by a very small core genome (1009 genes, about 2%), a high fraction of unique (43,808 genes, about 87%) and accessory genes (5559 genes, about 11%). Proteins belonging to COG categories “Carbohydrate transport and metabolism” (G), “Amino acid transport and metabolism” (E), “Coenzyme transport and metabolism” (H), “Inorganic ion transport and metabolism” (P), and “membrane biogenesis-related proteins” (M) are particularly abundant in the predicted proteome of DSM 29614 strain. The results of a protein functional enrichment analysis - based on a previous proteomic analysis – revealed metabolic optimization during Fe(III)-citrate anaerobic utilization. In this growth condition, the observed high levels of Fe(II) may be due to different flavin metal reductases and siderophores as inferred form genome analysis. The presence of genes responsible for the synthesis of exopolysaccharide and for the tolerance to heavy metals was highlighted too. The inferred genomic insights were confirmed by a set of phenotypic tests showing specific metabolic capability in terms of i) Fe2+ and exopolysaccharide production and ii) phosphatase activity involved in precipitation of metal ion-phosphate salts.ConclusionThe K. oxytoca DSM 29614 unique capabilities of using Fe(III)-citrate as sole carbon and energy source in anaerobiosis and tolerating diverse metals coincides with the presence at the genomic level of specific genes that can support i) energy metabolism optimization, ii) cell protection by the biosynthesis of a peculiar exopolysaccharide armour entrapping metal ions and iii) general and metal-specific detoxifying activities by different proteins and metabolites.

Highlights

  • Klebsiella oxytoca DSM 29614 - isolated from acid mine drainages - grows anaerobically using Fe(III)citrate as sole carbon and energy source, unlike other enterobacteria and K. oxytoca clinical isolates

  • K. oxytoca DSM 29614 genome The whole-genome shotgun project has been deposited at NCBI WGS database under the accession number MKCU00000000 and the version reported in this work was named MKCU01000000

  • The K. oxytoca DSM 29614 genome shows peculiar characteristics which confirm the view of an open pangenome for Klebsiella species which is in agreement with the wide distribution of member of Klebsiella genus

Read more

Summary

Introduction

Klebsiella oxytoca DSM 29614 - isolated from acid mine drainages - grows anaerobically using Fe(III)citrate as sole carbon and energy source, unlike other enterobacteria and K. oxytoca clinical isolates. The strain K. oxytoca DSM 29614 (ex BAS-10) was isolated under an iron hydroxides mat from an acid drainage of a pyrite mine at Metalliferous Hills in Southern Tuscany, Italy [8, 9] This strain is able to grow using Fe(III)-citrate as sole carbon source under anaerobic condition, producing Fe(II) from Fe(III) and a peculiar exopolysaccharide (EPS) containing rhamnose, glucuronic acid and galactose [10, 11]. Proteomic analysis performed by 2D-Differential Gel Electrophoresis (2D-DIGE) and mass spectrometry (MS) procedures revealed that protein differential regulation seems to ensure efficient cell growth coupled with EPS production by adapting metabolic and biochemical processes in order to face iron toxicity and to optimize energy production [26] These characteristics prove insights into the remarkable biotechnological usefulness of this bacterium

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.