Abstract
Recent advances in the field of programmable DNA-binding proteins have led to the development of facile methods for genomic localization of genetically encodable entities. Despite the extensive utility of these tools, locus-specific delivery of synthetic molecules remains limited by a lack of adequate technologies. Here we combine the flexibility of chemical synthesis with the specificity of a programmable DNA-binding protein by using protein trans-splicing to ligate synthetic elements to a nuclease-deficient Cas9 (dCas9) in vitro and subsequently deliver the dCas9 cargo to live cells. The versatility of this technology is demonstrated by delivering dCas9 fusions that include either the small-molecule bromodomain and extra-terminal family bromodomain inhibitor JQ1 or a peptide-based PRC1 chromodomain ligand, which are capable of recruiting endogenous copies of their cognate binding partners to targeted genomic binding sites. We expect that this technology will allow for the genomic localization of a wide array of small molecules and modified proteinaceous materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.