Abstract

Background: Meiotic recombination events do not occur randomly along a chromosome, but appear to be restricted to specific regions. In addition, some regions in the genome undergo recombination more frequently in the germ cells of one sex than the other. Genomic imprinting, the process by which the two parental alleles of a gene are differentially marked, is another genetic phenomenon associated with inheritance from only one parent or the other. The mechanisms that control meiotic recombination and genomic imprinting are unknown, but both phenomena necessarily depend on the presence of some DNA signal sequences and/or on the structure of the surrounding chromatin domain.Results In the present study, we compared the frequencies of sex-specific recombination events in three chromosomal regions of the human genome that contain clustered imprinted genes. Alignment of the genetic and physical maps of the ZNF127–SNRPN–1PW–PAR-5–PAR-1 region on chromosome 15q11–q13 (associated with Prader–Willi and Angelman syndromes) and the IGF2–H19 region on chromosome 11p15.5 (associated with Beckwith–Wiedemann syndrome) shows that both regions recombine with very high frequency during male meiosis, and with very low frequency during female meiosis. A third region around the WT-1 gene on chromosome 11p13 also recombines with higher frequency during male meiosis.Conclusion The results show that the two best-known imprinted regions in the human genome are characterized by significant differences in recombination frequency during male and female meioses. A third, less well-characterized, imprinted region shows a similar sex-specific bias. On the basis of these observations, we propose a model suggesting that the region-specific differential accessibility of DNA that leads to differential recombination rates during male and female meioses also leads to the male- and female-specific modification of the signal sequences that control genomic imprinting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.