Abstract

Collagen biosynthesis in both invertebrates and vertebrates is critically dependent upon the activity of lysyl hydroxylase (LH) enzymes. In humans, mutations in the genes encoding LH1 and LH2 have been shown to cause two distinct connective tissue disorders, Ehlers–Danlos (Type VIA) and Bruck syndromes. While the biochemical properties of these enzymes have been intensively studied, their embryonic patterns of expression and developmental roles remain unknown. We now present the cloning and analyses of the genes encoding LH1 and LH2 in the zebrafish, Danio rerio. We find these genes to be similarly organized to other vertebrate lh ( plod) genes, including the presence of an alternatively spliced exon in lh2. We also examine the mRNA expression patterns of lh1 and lh2 during embryogenesis and find them to exhibit unique and dynamic patterns of expression. These results strongly suggest that LH enzymes are not merely housekeeping enzymes, but play distinct developmental roles. The identification of these genes in the zebrafish, a genetic model organism whose development is well characterized, now provides the basis for the establishment of the first animal models for both Ehlers–Danlos (Type VIA) and Bruck syndromes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.