Abstract

BackgroundIn the past, pedigree relationships were used to control and monitor inbreeding because genomic relationships among selection candidates were not available until recently. The aim of this study was to understand the consequences for genetic variability across the genome when genomic information is used to estimate breeding values and in managing the inbreeding generated in the course of selection on genome-enhanced estimated breeding values.MethodsThese consequences were measured by genetic gain, pedigree- and genome-based rates of inbreeding, and local inbreeding across the genome. Breeding schemes were compared by simulating truncation selection or optimum contribution selection with a restriction on pedigree- or genome-based inbreeding, and with selection using estimated breeding values based on genome- or pedigree-based BLUP. Trait information was recorded on full-sibs of the candidates.ResultsWhen the information used to estimate breeding values and to constrain rates of inbreeding were either both pedigree-based or both genome-based, rates of genomic inbreeding were close to the desired values and the identical-by-descent profiles were reasonably uniform across the genome. However, with a pedigree-based inbreeding constraint and genome-based estimated breeding values, genomic rates of inbreeding were much higher than expected. With pedigree-instead of genome-based estimated breeding values, the impact of the largest QTL on the breeding values was much smaller, resulting in a more uniform genome-wide identical-by-descent profile but genomic rates of inbreeding were still higher than expected based on pedigree relationships, because they measure the inbreeding at a neutral locus not linked to any QTL. Neutral loci did not exist here, where there were 100 QTL on each chromosome. With a pedigree-based inbreeding constraint and genome-based estimated breeding values, genomic rates of inbreeding substantially exceeded the value of its constraint. In contrast, with a genome-based inbreeding constraint and genome-based estimated breeding values, marker frequencies changed, but this change was limited by the inbreeding constraint at the marker position.ConclusionsTo control inbreeding, it is necessary to account for it on the same basis as what is used to estimate breeding values, i.e. pedigree-based inbreeding control with traditional pedigree-based BLUP estimated breeding values and genome-based inbreeding control with genome-based estimated breeding values.

Highlights

  • In the past, pedigree relationships were used to control and monitor inbreeding because genomic relationships among selection candidates were not available until recently

  • Genetic gain was 11% higher for GBLUP than for TBLUP and, ΔFped was much lower for GBLUP than TBLUP, ΔFIBD was only slightly lower for GBLUP than TBLUP (Table 1)

  • With GBLUP schemes the increase in genomic inbreeding was well above the increase in pedigree inbreeding

Read more

Summary

Introduction

Pedigree relationships were used to control and monitor inbreeding because genomic relationships among selection candidates were not available until recently. The increased accuracy of genome-based EBV can differ between methods used to estimate them and, e.g., the number of genes affecting the trait. Pedigree-based relationship matrices have been used to control inbreeding rates, which constrain inbreeding rates at a neutral locus that is not linked to any QTL. It may be questioned whether such a locus exists, especially since genomic selection and other studies suggest that most traits are affected by a large number of QTL across the genome [9,10,11,12]. Using genomic relationships may help to better control genome-based inbreeding, and may provide a tool for breeders to manage footprints of selection [13,14,15,16]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call