Abstract
Background Tree breeding is logistically complex and expensive, and breeders have long sought to use molecular markers to accelerate breeding. A candidate gene approach based on testing for association between the presence of DNA sequence variation in or near candidate genes, and phenotypic variation in a population has long been explored [1,2]. However, using candidate gene approach (QTLs) has not been successful in breeding [3,4]. QTL-trait associations detected in one genetic background are often not observed in other families, because of recombination of genes during the segregation and low levels of linkage disequilibrium in the population. A new technology called genomic selection (GS) is revolutionizing dairy cattle breeding. In GS, marker effects are first estimated in a large training population (>500) with both phenotypic and genotypic data. Subsequently, estimated marker effects are used to predict breeding values in validation populations for which marker genotypes but not phenotypes are available [4]. Several dairy cattle breeding companies now routinely use GS to select and market bulls. The success of GS in cattle breeding is largely based on bovine genome sequencing and discovery of thousands of SNP markers. GS application, if successful, will have a great impact on forest tree breeding because of their complex and logistically difficult breeding programs. Although, there have been several simulation studies examining the effective population size, linkage disequilibrium, and heritability on the predicted accuracy of GS in tree breeding [5], GS has not yet been demonstrated for forest trees using empirical markers data, mainly due to lack of sufficient dense markers. Methods Biallelic SNP markers provided by the CTGN project (http://dendrome.ucdavis.edu/ctgn/) were used for genotyping. A population of 149 cloned full-sib offspring of loblolly pine (Pinus taeda L.) was phenotyped. Fitting 3406 informative SNP markers simultaneously, we estimated genome-wide breeding values and compared them with breeding values based on pedigree model. Variances explained by the marker additive and dominant effects were obtained.
Highlights
Tree breeding is logistically complex and expensive, and breeders have long sought to use molecular markers to accelerate breeding
Lignin and cellulose content had great accuracy values from genomic selection (GS) compared to growth traits
The accuracies were comparable with breeding values that were calculated based on the traditional pedigree model
Summary
Tree breeding is logistically complex and expensive, and breeders have long sought to use molecular markers to accelerate breeding. In GS, marker effects are first estimated in a large training population (>500) with both phenotypic and genotypic data. Estimated marker effects are used to predict breeding values in validation populations for which marker genotypes but not phenotypes are available [4]. The success of GS in cattle breeding is largely based on bovine genome sequencing and discovery of thousands of SNP markers. There have been several simulation studies examining the effective population size, linkage disequilibrium, and heritability on the predicted accuracy of GS in tree breeding [5], GS has not yet been demonstrated for forest trees using empirical markers data, mainly due to lack of sufficient dense markers
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.