Abstract

Mechanisms to guard genomic integrity are critical to ensuring the welfare and survival of an organism. Disruptions of genomic integrity can result in aneuploidy, a large-scale genomic imbalance caused by either extra or missing whole chromosomes (chromosomal aneuploidy) or chromosome segments (segmental aneuploidy). A change in dosage of a single gene may not compromise the well-being of an organism, but the combined altered dosage of many genes due to aneuploidy disturbs the overall balance of gene expression networks, resulting in decreased fitness and mortality [1],[2]. Chromosomal aneuploidy is a common cause of birth defects—Down syndrome is caused by an extra copy of Chromosome 21, and Turner syndrome by a single copy of the X chromosome in females. Furthermore, methods that detect segmental aneuploidy have uncovered small deletions or duplications of the genome in association with many disorders, such as mental retardation. Chromosomal and segmental aneuploidies are also frequent in cancer cells in which changes in copy number paradoxically increase cell fitness but are unfavorable to survival of the organism. A fundamental issue in biology and medicine is to understand the effects of aneuploidy on gene expression and the mechanisms that alleviate aneuploidy-induced imbalance of the genome. Chromosomal aneuploidy is caused by non-disjunction of chromosomes in meiosis or mitosis, while segmental aneuploidy involves breakage and ligation of DNA. In contrast, the sex chromosomes provide an example of a naturally occurring “aneuploidy” caused by the evolution of a specific set of chromosomes for sex determination that often differ in their copy number between males and females. For example, in mammals and in flies, females have two X chromosomes and males have one X chromosome and a Y chromosome, resulting in X monosomy in males. How does a cell or an organism respond to such different types of aneuploidy, abnormal or natural? It turns out that the overall expression level of a given gene is not necessarily in direct relation to the copy number. Unique strategies have evolved to deal with abnormal gene dosage to alleviate the effects of aneuploidy by dampening changes in expression levels. What's more, the X chromosome has evolved sophisticated mechanisms to achieve complete dosage compensation, not surprisingly, since the copy number difference between males and females has been evolving for a long time.

Highlights

  • Chromosomal aneuploidy is caused by non-disjunction of chromosomes in meiosis or mitosis, while segmental aneuploidy involves breakage and ligation of DNA

  • What’s more, the X chromosome has evolved sophisticated mechanisms to achieve complete dosage compensation, not surprisingly, since the copy number difference between males and females has been evolving for a long time

  • There are two main outcomes from altered gene dosage in aneuploidy in terms of transcript levels—either levels directly correlate with gene dosage or they are unchanged/partially changed with gene dosage [3]

Read more

Summary

Introduction

Chromosomal aneuploidy is caused by non-disjunction of chromosomes in meiosis or mitosis, while segmental aneuploidy involves breakage and ligation of DNA. Sex chromosome-specific dosage compensation evolved in response to the dose imbalance between autosomes and sex chromosomes in the heterogametic sex due to the different number of sex chromosomes between the sexes—for example, a single X chromosome and a gene-poor Y chromosome in males and two X chromosomes in females.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call