Abstract

Transcription profiling of Candida albicans cells responding to the elimination of the wall (protoplasts) and posterior regeneration was explored. DNA microarrays were used to measure changes in the expression of 6039 genes, and the upregulated genes during regeneration at 28 °C were assigned to fourteen categories. A total of 407 genes were upregulated during the process, of which 144 reached a maximum after 1 h. MKC1, a gene encoding a member of the regulatory pathway involved in cell wall integrity was overexpressed. Time-dependent expression divided the genes into 40 clusters. Clusters 1–19 were highly expressed initially (time 0) and downregulated following incubation, whereas transcription of the genes grouped into clusters 20–40 showed the opposite behaviour. These results suggest that the first clusters group genes permitting the cell adaptation to a sub-optimal environment due to removal of the wall, whereas the second group represents genes required for protoplasts regeneration after shifted to optimal conditions from 4 to 28 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call