Abstract

BackgroundPolyploid species contribute to Oryza diversity. However, the mechanisms underlying gene and genome evolution in Oryza polyploids remain largely unknown. The allotetraploid Oryza minuta, which is estimated to have formed less than one million years ago, along with its putative diploid progenitors (O. punctata and O. officinalis), are quite suitable for the study of polyploid genome evolution using a comparative genomics approach.ResultsHere, we performed a comparative study of a large genomic region surrounding the Shattering4 locus in O. minuta, as well as in O. punctata and O. officinalis. Duplicated genomes in O. minuta have maintained the diploid genome organization, except for several structural variations mediated by transposon movement. Tandem duplicated gene clusters are prevalent in the Sh4 region, and segmental duplication followed by random deletion is illustrated to explain the gene gain-and-loss process. Both copies of most duplicated genes still persist in O. minuta. Molecular evolution analysis suggested that these duplicated genes are equally evolved and mostly manipulated by purifying selection. However, cDNA-SSCP analysis revealed that the expression patterns were dramatically altered between duplicated genes: nine of 29 duplicated genes exhibited expression divergence in O. minuta. We further detected one gene silencing event that was attributed to gene structural variation, but most gene silencing could not be related to sequence changes. We identified one case in which DNA methylation differences within promoter regions that were associated with the insertion of one hAT element were probably responsible for gene silencing, suggesting a potential epigenetic gene silencing pathway triggered by TE movement.ConclusionsOur study revealed both genetic and epigenetic mechanisms involved in duplicated gene silencing in the allotetraploid O. minuta.

Highlights

  • IntroductionThe allotetraploid Oryza minuta, which is estimated to have formed less than one million years ago, along with its putative diploid progenitors (O. punctata and O. officinalis), are quite suitable for the study of polyploid genome evolution using a comparative genomics approach

  • Sequencing and annotation of the Sh4-orthologous regions We sequenced 10 bacterial artificial chromosome (BAC) clones covering the Sh4-orthologous regions in O. punctata (BB), O. minuta (BBCC) and O. officinalis (CC) (Table 1)

  • We investigated the evolutionary mechanism of the Gene 29 cluster, where three copies of Gene 29 were present in the AA and BBCC_CC genomes, four copies were present in the BB, BBCC_BB and CC genomes and only one copy was present in the FF genome (O. brachyantha is the single representative of this genome type, which is the basal lineage in the genus Oryza)

Read more

Summary

Introduction

The allotetraploid Oryza minuta, which is estimated to have formed less than one million years ago, along with its putative diploid progenitors (O. punctata and O. officinalis), are quite suitable for the study of polyploid genome evolution using a comparative genomics approach. The genus Oryza, comprising two cultivated and approximately 22 wild species, is classified into 10 genome types, including six diploids (AA, BB, CC, EE, FF and GG) and four allotetraploids (BBCC, CCDD, HHJJ and KKLL) [3,4]. The potential progenitors of only a few species with the BBCC genome type have been identified [4,8] Of these species, O. minuta was selected as the representative species of BBCC in the Oryza Map Alignment

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call