Abstract

BackgroundGenetic improvement of root system architecture is a promising approach for improved uptake of water and mineral nutrients distributed unevenly in the soil. To identify genomic regions associated with the length of different root types in rice, we quantified root system architecture in a set of 26 chromosome segment substitution lines derived from a cross between lowland indica rice, IR64, and upland tropical japonica rice, Kinandang Patong, (IK-CSSLs), using 2D & 3D root phenotyping platforms.ResultsLengths of seminal and crown roots in the IK-CSSLs grown under hydroponic conditions were measured by 2D image analysis (RootReader2D). Twelve CSSLs showed significantly longer seminal root length than the recurrent parent IR64. Of these, 8 CSSLs also exhibited longer total length of the three longest crown roots compared to IR64. Three-dimensional image analysis (RootReader3D) for these CSSLs grown in gellan gum revealed that only one CSSL, SL1003, showed significantly longer total root length than IR64. To characterize the root morphology of SL1003 under soil conditions, SL1003 was grown in Turface, a soil-like growth media, and roots were quantified using RootReader3D. SL1003 had larger total root length and increased total crown root length than did IR64, although its seminal root length was similar to that of IR64. The larger TRL in SL1003 may be due to increased crown root length.ConclusionsSL1003 carries an introgression from Kinandang Patong on the long arm of chromosome 1 in the genetic background of IR64. We conclude that this region harbors a QTL controlling crown root elongation.

Highlights

  • Genetic improvement of root system architecture is a promising approach for improved uptake of water and mineral nutrients distributed unevenly in the soil

  • QRL1.1 was mapped on chromosome 1 using a population of Taichung 65 (Oryza sativa) / IRGC 104038 (O. glaberrima) back cross recombinant lines, qRL6.1 was mapped on chromosome 6 using Koshihikari / Kasalath chromosome segment substitution lines (CSSLs) at the seedling stage under hydroponic conditions [30, 31], and qRL7 was mapped on chromosome 7 using Xiequingzao / R9308 recombinant inbred lines (RILs) at heading stage under hydroponic conditions [33]

  • Root traits in the 26 IK-CSSLs grown under hydroponic conditions A time course for root growth showed that the seminal root length (SRL) of Kinandang Patong (KP) was significantly longer than that of IR64, starting at 6 days after germination (DAG) (Fig. 1)

Read more

Summary

Introduction

Genetic improvement of root system architecture is a promising approach for improved uptake of water and mineral nutrients distributed unevenly in the soil. Global climate change combined with economic development in recent years has exacerbated the pressure on scarce water and mineral nutrient resources for rice production Under such conditions, improvements in efficient acquisition of these resources by optimizing RSA for specific microenvironments will be essential for steady increases in crop production in the future [7]. Two rice QTLs for root gravitropic response, a component of RGA, were identified on chromosomes 6 and 10 [14] Among all of these rice RSA QTL, DRO1, which has been detected on chromosome 9 in recombinant inbred lines (RILs) derived from a cross between the lowland cultivar ‘IR64’ and the upland cultivar ‘Kinandang Patong’, has been the first to be cloned and the resulting information used for molecular breeding of improved drought avoidance [15]. QRL1.1 was mapped on chromosome 1 using a population of Taichung 65 (Oryza sativa) / IRGC 104038 (O. glaberrima) back cross recombinant lines, qRL6.1 was mapped on chromosome 6 using Koshihikari / Kasalath chromosome segment substitution lines (CSSLs) at the seedling stage under hydroponic conditions [30, 31], and qRL7 was mapped on chromosome 7 using Xiequingzao / R9308 RILs at heading stage under hydroponic conditions [33]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call