Abstract

Oat genotypes vary for photoperiod and vernalization responses. Vernalization often promotes earlier flowering in fall-sown but not spring-sown cultivars. Longer photoperiods also promote earlier flowering, and the response to longer photoperiods tends to be greater in cultivars from higher latitudes. To investigate the genetic basis of photoperiod and vernalization responses in oat, we mapped QTLs for flowering time under four combinations of photoperiod and vernalization treatments in the Ogle x TAM O-301 mapping population in growth chambers. We also mapped QTLs for flowering time in early spring and late-spring field plantings to determine the genetic basis of response to early spring planting in oat. Three major flowering-time QTLs (on linkage groups OT8, OT31 and OT32) were detected in most conditions. QTLs with smaller effects on flowering were less-consistently observed among treatments. Both vernalization-sensitive and insensitive QTLs were discovered. Longer photoperiod or vernalization alone tended to decrease the effects of flowering-time QTLs. Applied together, longer photoperiod and vernalization interacted synergistically, often on the same genomic regions. Earlier spring planting conferred an attenuated vernalization treatment on seeds. The major flowering-time QTLs mapped in this study matched those mapped previously in the Kanota x Ogle oat mapping population. Between these two studies, we found a concordance of flowering-time QTLs, segregation distortion, and complex genetic linkages. These effects may all be related to chromosomal rearrangements in hexaploid oat. Comparative mapping between oat and other grasses will facilitate molecular analysis of vernalization response in oat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call