Abstract

(1) Background: Metal homeostasis is an important part of cellular programs and is disrupted when cells are exposed to carcinogenic heavy metals. Metal response is mediated by the metal response element transcription factor MTF-1. However, where MTF-1 binds and how that binding changes in response to heavy metals, such as cadmium, remains unknown. (2) Methods: To investigate the effects of prolonged cadmium exposure on the genomic distribution of MTF-1, we performed MTF-1 CUT&RUN, RNA-seq and ATAC-seq on control and cadmium-resistant cells. (3) Results: Changes in MTF-1 binding primarily occur distal to the transcription start sight. Newly occupied MTF-1 sites are enriched for FOS/JUN DNA binding motifs, while regions that lose MTF-1 binding in cadmium are enriched for the FOX transcription factor family member DNA binding sites. (4) Conclusions: Relocalization of MTF-1 to new genomic loci does not alter the accessibility of these locations. Our results support a model whereby MTF-1 is relocalized to accessible FOS/JUN-bound genomic locations in response to cadmium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.