Abstract

IntroductionPrimary mediastinal large B-cell lymphoma (PMBCL) is an aggressive malignancy commonly diagnosed in young adult females. In recent years, mutational and gene expression profiling has established genotypic and phenotypic similarity of PMBCL with both classical Hodgkin and diffuse large B-cell lymphoma (DLBCL). In-depth analyses of genomes and transcriptomes have highlighted several inactivating mutations (SOCS1, TP53), chromosomal amplifications (2p, 9p, Xp, Xq) and translocations (CIITA) thought to be integral in establishing and/or maintaining the PMBCL phenotype. Programmed death ligands (PDL) 1 (CD274) and 2 (PDCD1LG2), which are located on chromosome 9p24.1, are two emerging genes of interest that have been shown to be altered in PMBCL and can induce T-cell anergy by binding to the receptor, programmed death 1. Here, we describe the recurrence of chromosomal rearrangements of the PDL locus in various B-cell lymphomas and explore the association of these rearrangements with transcript levels. MethodsTo establish the frequency of CD274 and PDCD1LG2 aberration, we conducted fluorescence in situ hybridization (FISH) on 551 clinical samples and 20 established cell lines using in-house break-apart probes. Epstein-Barr virus encoded RNA in situ hybridization was also carried out on the clinical cohort. The clinical cases, sourced from the British Columbia Cancer Agency's Centre for Lymphoid Cancer tissue repository, consisted of 125 PMBCLs, 216 DLBCLs, 130 primary DLBCL of the central nervous system (PCNSL), 12 nodular lymphocyte predominant Hodgkin lymphomas (NLPHL) and 68 follicular lymphomas (FL) with diagnoses based on the WHO classification. The DLBCL cohort could be further subdivided into 134 nodal DLBCLs and 82 testicular DLBCLs (T-DLBCL). Quantitative real-time PCR (qRT-PCR) was subsequently conducted on 17 cell lines and a clinical sub-cohort of 76 samples, for which fresh-frozen material was available, to determine the effect of mutations on transcript expression. We then characterized the PDL aberrations of two clinical PMBCL cases and three cell lines (DEV, L-428, L-1236), at base pair resolution, by applying the bioinformatic tools, nFuse, deFuse and destruct to both newly produced and previously published whole genome (WGS) and whole transcriptome (RNA-seq) libraries. ResultsFISH revealed a PDL locus (9p24.1) break-apart frequency of 20% (25/125) in PMBCL. There were no differences in any known clinical parameters or frequency of Epstein-Barr virus positivity between positive and negative PDL break-apart cases. Break-apart frequencies in other malignancies were calculated to be 3% in DLBCL, 7% in T-DLBCL and 1% in PCNSL; no positive cases were identified in either NLPHL or FL. The proportion of break-apart positive cases was significantly higher in PMBCL as compared to the other lymphomas surveyed (P < 0.05). Further, in agreement with the published literature, we observed an amplification frequency of the PDL locus in 36% (45/125) of PMBCLs. qRT-PCR established that PDCD1LG2 transcript levels were significantly higher in cases with 9p24.1 locus rearrangements compared to copy number neutral (P = 0.0003), gain (P = 0.001) and amplified cases (P = 0.005). Likewise, CD274 transcript levels were significantly higher in rearranged cases compared to copy number neutral cases (P = 0.03). Following the analysis of WGS and RNA-seq libraries, we were able to characterize four novel fusion transcripts involving the 9p24.1 locus: PDCD1LG2-NRG1 (PMBCL clinical case), PDCD1LG2-IGHV7-81 (L-1236), CIITA-PDCD1LG2 (DEV) and KIAA1432-CLDN14 (L-428). Aberrations involving both NRG1 and CIITA have previously been implicated in breast cancer and B-cell lymphomas, respectively. We also identified a translocation in another PMBCL clinical case with breakpoints in the intergenic spaces near LRMP and CD274, though this rearrangement did not produce a fusion transcript. ConclusionTaken together, our findings show that rearrangement of the PDL locus is recurrent in PMBCL, characteristic of PMBCL and leads to overexpression of PDL transcripts. Given the well-referenced function of PDLs in repressing the anti-tumor response, these data suggest that targeting the PDL axis in a subgroup of B-cell lymphomas holds clinical promise. Disclosures:No relevant conflicts of interest to declare.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call