Abstract

Most Salmonella serovars are general pathogens that infect a variety of hosts. These "generalist" serovars cause disease in many animals from reptiles to mammals. In contrast, a few serovars cause disease only in a specific host. Host-specific serovars can cause a systemic, often fatal disease in one species yet remain avirulent in other species. Host-specific Salmonella frequently have large genomic rearrangements due to recombination at the ribosomal RNA (rrn) operons while the generalists consistently have a conserved chromosomal arrangement. To determine whether this is the result of an intrinsic difference in recombination frequency or a consequence of lifestyle difference between generalist and host-specific Salmonella, we determined the frequency of rearrangements in vitro. Using lacZ genes as portable regions of homology for inversion analysis, we found that both generalist and host-specific serovars of Salmonella have similar tolerances to chromosomal rearrangements in vitro. Using PCR and genetic selection, we found that generalist and host-specific serovars also undergo rearrangements at rrn operons at similar frequencies in vitro. These observations indicate that the observed difference in genomic stability between generalist and host-specific serovars is a consequence of their distinct lifestyles, not intrinsic differences in recombination frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.