Abstract

BackgroundPlant microRNAs (miRNAs) are involved in various biological pathways and stress responses as negative regulators at the posttranscriptional level. Abscisic acid (ABA) is a key signaling molecule that mediates plant stress response by activating many stress-related genes. Although some miRNAs in plants are previously identified to respond to ABA, a comprehensive profile of ABA-responsive miRNAs has not yet been elucidated.ResultsHere, we identified miRNAs responding to exogenous application of ABA, and their predicted target genes in the model plant organism tomato (Solanum lycopersicum). Deep sequencing of small RNAs from ABA-treated and untreated tomatoes revealed that miRNAs can be up- or down-regulated upon treatment with ABA. A total of 1067 miRNAs were detected (including 365 known and 702 candidate novel miRNAs), of those, 416 miRNAs which had an abundance over two TPM (transcripts per million) were selected for differential expression analysis. We identified 269 (180 known and 89 novel) miRNAs that respond to exogenous ABA treatment with a change in expression level of |log2FC|≥0.25. 136 of these miRNAs (90 known and 46 novel) were expressed at significantly different levels |log2FC|≥1 between treatments. Furthermore, stem-loop RT-PCR was applied to validate the RNA-seq data. Target prediction and analysis of the corresponding ABA-responsive transcriptome data uncovered that differentially expressed miRNAs are involved in condition stress and pathogen resistance, growth and development. Among them, approximately 90 miRNAs were predicted to target transcription factors and pathogen resistance genes. Some miRNAs had functional overlap in biotic and abiotic stress. Most of these miRNAs were down-regulated following exposure to exogenous ABA, while their related target genes were inversely up-regulated, which is consistent with their negative regulatory role in gene expression.ConclusionsExogenous ABA application influences the composition and expression level of tomato miRNAs. ABA mainly down-regulates miRNAs that their target genes involve in abiotic stress adaption and disease resistance. ABA might increase expression of stress-related genes via miRNA-mediated posttranscriptional regulation, and our results indicate that ABA treatment has the potential to improve both abiotic stress tolerance and pathogen resistance. This study presents a comprehensive profile of ABA-regulated miRNAs in the tomato, and provides a robust database for further investigation of ABA regulatory mechanisms.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2591-8) contains supplementary material, which is available to authorized users.

Highlights

  • Plant microRNAs are involved in various biological pathways and stress responses as negative regulators at the posttranscriptional level

  • Global miRNA profile analysis We constructed small RNA (sRNA) libraries from tomato leaves sprayed with water or Abscisic acid (ABA) solution (ABA treatment, ABA treatment after 1 day (A1D)) using the HiSeq 2000 system

  • We identified 64 miRNAs involved in regulating the expression of disease resistance genes that respond to exogenous ABA (Additional file 1: Table S8)

Read more

Summary

Introduction

Plant microRNAs (miRNAs) are involved in various biological pathways and stress responses as negative regulators at the posttranscriptional level. Following the sequencing of its complete genome, it is becoming possible to predict, characterize, and validate miRNAs from the tomato (sly-miRNAs) [8, 9], yet only ~50 mature tomato miRNAs have been reported in the miRBase database to date (http://www.mirbase.org/). Some of these miRNAs are well characterized; for example, miR395, miR398, and miR399 are linked to nutrient deficiency stress, and miR399 is induced in response to phosphate starvation [10,11,12]. A large number of miRNAs remain to be discovered, and the functions of most miRNAs remain unknown

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.