Abstract
AbstractBackgroundGenomic selection has the potential to accelerate genetic gain in perennial ryegrass breeding, provided complex traits such as forage yield can be predicted with sufficient accuracy.MethodsIn this study, we compared modelling approaches and feature selection strategies to evaluate the accuracy of genomic prediction models for seasonal forage yield production.ResultsOverall, model selection had limited impact on predictive ability when using the full data set. For a baseline genomic best linear unbiased prediction model, the highest mean predictive accuracy was obtained for spring grazing (0.78), summer grazing (0.62) and second cut silage (0.56). In terms of feature selection strategies, using uncorrelated single‐nucleotide polymorphisms (SNPs) had no impact on predictive ability, allowing for a potential decrease of the data set dimensions. With a genome‐wide association study, we found a significant SNP marker for spring grazing, located in the genic region annotated as coding for an enzyme responsible for fucosylation of xyloglucans—major components of the plant cell wall. We also presented an approach to increase interpretability of genomic prediction models with the use of Gene Ontology enrichment analysis.ConclusionsApproaches for feature selection will be relevant in development of low‐cost genotyping platforms in support of routine and cost‐effective implementation of genomic selection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.