Abstract
BackgroundGenomic selection is a powerful tool in plant breeding. By building a prediction model using a training set with markers and phenotypes, genomic estimated breeding values (GEBVs) can be used as predictions of breeding values in a target set with only genotype data. There is, however, limited information on how prediction accuracy of genomic prediction can be optimized. The objective of this study was to evaluate the performance of 11 genomic prediction models across species in terms of prediction accuracy for two traits with different heritabilities using several subsets of markers and training population proportions. Species studied were maize (Zea mays, L.), soybean (Glycine max, L.), and rice (Oryza sativa, L.), which vary in linkage disequilibrium (LD) decay rates and have contrasting genetic architectures.ResultsCorrelations between observed and predicted GEBVs were determined via cross validation for three training-to-testing proportions (90:10, 70:30, and 50:50). Maize, which has the shortest extent of LD, showed the highest prediction accuracy. Amongst all the models tested, Bayes B performed better than or equal to all other models for each trait in all the three crops. Traits with higher broad-sense and narrow-sense heritabilities were associated with higher prediction accuracy. When subsets of markers were selected based on LD, the accuracy was similar to that observed from the complete set of markers. However, prediction accuracies were significantly improved when using a subset of total markers that were significant at P ≤ 0.05 or P ≤ 0.10. As expected, exclusion of QTL-associated markers in the model reduced prediction accuracy. Prediction accuracy varied among different training population proportions.ConclusionsWe conclude that prediction accuracy for genomic selection can be improved by using the Bayes B model with a subset of significant markers and by selecting the training population based on narrow sense heritability.
Highlights
Genomic selection is a powerful tool in plant breeding
The days to tasseling (DT) ranged by 30.5 days and the ear height (EH) ranged by 128 cm
The panicles per plant (PPP) ranged by 1.89 panicles and the seeds per plant (SPP) ranged by 2.19 seeds (Table 1)
Summary
By building a prediction model using a training set with markers and phenotypes, genomic estimated breeding values (GEBVs) can be used as predictions of breeding values in a target set with only genotype data. The objective of this study was to evaluate the performance of 11 genomic prediction models across species in terms of prediction accuracy for two traits with different heritabilities using several subsets of markers and training population proportions. High throughput genotyping methods have resulted in a large number of molecular markers that are available to assist in crop breeding. Marker-assisted selection (MAS) is a popular method in molecular crop breeding [4], utilization of MAS has been limited in breeding programs because many of the important agronomic traits in crop breeding are complex and controlled by a large number of genes with small effects [5], making effective MAS difficult or impossible
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.