Abstract

BackgroundLong wave-sensitive (LWS) opsin genes have undergone multiple lineage-specific duplication events throughout the evolution of teleost fishes. LWS repertoire expansions in live-bearing fishes (family Poeciliidae) have equipped multiple species in this family with up to four LWS genes. Given that color vision, especially attraction to orange male coloration, is important to mate choice within poeciliids, LWS opsins have been proposed as candidate genes driving sexual selection in this family. To date the genomic organization of these genes has not been described in the family Poeciliidae, and little is known about the mechanisms regulating the expression of LWS opsins in any teleost.ResultsTwo BAC clones containing the complete genomic repertoire of LWS opsin genes in the green swordtail fish, Xiphophorus helleri, were identified and sequenced. Three of the four LWS loci identified here were linked in a tandem array downstream of two tightly linked short wave-sensitive 2 (SWS2) opsin genes. The fourth LWS opsin gene, containing only a single intron, was not linked to the other three and is the product of a retrotransposition event. Genomic and phylogenetic results demonstrate that the LWS genes described here share a common evolutionary origin with those previously characterized in other poeciliids. Using qualitative RT-PCR and MSP we showed that each of the LWS and SWS2 opsins, as well as three other cone opsin genes and a single rod opsin gene, were expressed in the eyes of adult female and male X. helleri, contributing to six separate classes of adult retinal cone and rod cells with average λmax values of 365 nm, 405 nm, 459 nm, 499 nm, 534 nm and 568 nm. Comparative genomic analysis identified two candidate teleost opsin regulatory regions containing putative CRX binding sites and hormone response elements in upstream sequences of LWS gene regions of seven teleost species, including X. helleri.ConclusionsWe report the first complete genomic description of LWS and SWS2 genes in poeciliids. These data will serve as a reference for future work seeking to understand the relationship between LWS opsin genomic organization, gene expression, gene family evolution, sexual selection and speciation in this fish family.

Highlights

  • Long wave-sensitive (LWS) opsin genes have undergone multiple lineage-specific duplication events throughout the evolution of teleost fishes

  • Because LWS genes are linked to short wave-sensitive 2 (SWS2) opsins in other teleosts, we tested Contig I bacterial artificial chromosome (BAC) for the presence of SWS2A and SWS2B opsins using consensus primers designed from guppy (DQ234860), Lucania goodei (AY296736, AY296737), medaka (AB223056, AB223057), and cichlid (AF247120, AF247116) SWS2A and SWS2B opsin sequences

  • A single BAC clone from Contig I (VMRC27-186P13) that was positive for all SWS2 and LWS opsin PCR primer sets and a single BAC clone from Contig II (VMRC27-80H16) were chosen for shotgun library construction and sequencing, from which we identified complete sequences of four LWS (S180-1; S180-2; P180;S180r)and two SWS2 (SWS2A, SWS2B) opsin genes (Fig. 1)

Read more

Summary

Introduction

Long wave-sensitive (LWS) opsin genes have undergone multiple lineage-specific duplication events throughout the evolution of teleost fishes. Cone opsins, which are expressed in cone photoreceptor cells of the retina and responsible for mediating photopic vision, are comprised of four classes able to absorb light at different wavelengths across the spectrum. These are short wave-sensitive opsins (SWS1: ultraviolet to blue, and SWS2: violet to blue), medium to long wave-sensitive opsins (MWS or LWS: green to red), and rhodopsin-like opsins (RH2: blue to green), all of which were present in the most recent common vertebrate ancestor. The number of functional opsin classes observed in extant vertebrates varies from species to species, contributing to interspecific variation in visual potential [9,10]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.