Abstract
Glucosidase I initiates the processing of asparagine (N-) linked glycoproteins by removing the distal alpha1,2-linked glucosyl residue of the tetradecasaccharide Glc(3)Man(9)GlcNAc(2). The gene encoding this enzyme was isolated and its structural organization and promoter activity determined. The major transcript for glucosidase I on northern blot appeared to be 3.1 kb; Southern blotting and DNA sequencing indicated the size of the gene to be 6.8 kb, comprising four exons separated by three introns. The first exon encodes the cytoplasmic tail and transmembrane domain; the fourth encodes the putative catalytic domain of the enzyme. Exon-intron junctions are flanked by consensus splice donor and acceptor sequences. Transcription initiation sites were mapped by primer extension, ribonuclease protection assay and RT-PCR analysis. Primer extension results showed multiple initiation sites at -150, -156, and -272 bp relative to the translation initiation codon ATG. Sequence analysis of 5' flanking region showed no canonical TATA box, a high GC content, Sp1 and ETF binding sites (typical of a housekeeping gene promoter). Also noteworthy, the promoter region contains several generic STAT factor binding sites, one nearly perfect, and two half GR binding elements. Other cis- acting elements recognized by transcription factors such as AP-2, NF-kappaB, estrogen receptor, and progesterone receptor (PR) were also present in the putative promoter region. To determine the promoter activity, a construct encompassing the region between -2114 to -5 bp of the putative promoter was ligated to the chloramphenicol acetyltransferase (CAT) reporter plasmid and transiently transfected into COS 7 cells. CAT assay results clearly show transcriptional activity of the promoter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.