Abstract

BackgroundThe genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and β hemoglobin genes is of great interest.ResultsWe identified four bacterial artificial chromosomes (BACs) comprising two hemoglobin gene clusters spanning the entire α and β hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence in situ hybridization (FISH) analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and β hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr β globin genes, than the genomes of other teleosts that have been sequenced.ConclusionsWe suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon hemoglobin genes involves the loss of a single hemoglobin gene cluster after the whole genome duplication (WGD) at the base of the teleost radiation but prior to the salmonid-specific WGD, which then produced the duplicated copies seen today. We also propose that the relatively high number of hemoglobin genes as well as the presence of non-Bohr β hemoglobin genes may be due to the dynamic life history of salmon and the diverse environmental conditions that the species encounters.Data deposition: BACs S0155C07 and S0079J05 (fps135): GenBank GQ898924; BACs S0055H05 and S0014B03 (fps1046): GenBank GQ898925

Highlights

  • The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state

  • Identification and tiling paths of Atlantic salmon hemoglobin-containing bacterial artificial chromosomes (BACs) All 32P-labelled 40-mer probes for a, b, non-Bohr b and embryonic hemoglobins hybridized to Atlantic salmon BACs belonging to two fingerprint scaffolds, within the Atlantic salmon physical map [30,31]

  • PCR primers were designed for sequence tag sites (STS) within the BAC-end sequences (SP6 and T7 ends) of suspected overlapping BACs spanning the hemoglobin gene region, and overlaps were checked by PCR amplification of the STS within the putative overlapping BACs

Read more

Summary

Introduction

The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Examinations of the genomic organization of chromosomal hemoglobin gene regions suggest that all hemoglobin genes evolved from a single monomeric form when gnathostome fish evolved from the more primitive agnathan fish approximately 500-700 million years ago [5,6]. The current genomic organization seen in mammals and birds is such that a and b hemoglobin gene clusters are located on different chromosomes and transcribed from the same strand in order of temporal expression [8,9]. The most parsimonious explanation of this arrangement involves a disruption in the a-b linkage by translocation of part of the hemoglobin gene cluster and subsequent gene silencing of a and b hemoglobins on respective chromosomes prior to the lineage leading to birds and mammals approximately 300-350 million years ago [9,10]. Studies of the genomic organization of hemoglobin genes in the mammalian and avian lines examined this hypothesis by looking for evolutionary “footprints” of silenced hemoglobin genes as well as conservation and divergence patterns of genes surrounding the a and b gene clusters along the mammalian line [9,11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call